
Supplement
Tips and tricks

1

Tips and tricks in OpenFOAM®

Where and how should we

put more salt

… and as this is kind of a cooking recipe, it comes with a

small warning
2

Tips and tricks in OpenFOAM®

• What I am about to show you is based on my personal experience.

• To draw these kind of conclusions or observations, I conducted hundreds of

numerical experiments, under different conditions, with different meshes

(from good quality meshes to bad quality meshes with different cell types),

and different physics and models involved.

• Most important of all, before starting this long road, I got familiar with the

theory behind the FVM and CFD, the physics behind what I was doing, and

OpenFOAM® source code.

• At this point, I highly advise you to conduct similar numerical experiments

and draw your own conclusions.

• Please, use these slides as a reference only. I am not responsible

for your failures and mistakes.

3

Tips and tricks in OpenFOAM®

Our vertical workflow

• In our simulation vertical workflow, everything starts with the

geometry. So in order to get a good mesh, you need a good

geometry.

• When it comes to geometry generation, the only rule you

should keep in mind is that by the end of the day you should

get a unique clean and watertight geometry.

• Geometry defeaturing can made your life easier. Do not fool

yourself, if you have no constraints avoid sharp angles.

• And as for the mesh concerns, try to keep the skewness,

orthogonality, aspect ratio, and growth rate low.

• No need to say that if you have a bad geometry, is likely

probable that your mesh will be bad as well.

• Always remember: good mesh – good results.

MESH GENERATION

CASE SETUP AND SOLUTION

POST-PROCESSING

GEOMETRY GENERATION

4

Tips and tricks in OpenFOAM®

$HOME/OpenFOAM/OpenFOAM-1.6-ext.GPU/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-2.4.0-debug/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-2.4.x/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-1806-adjoint/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-1912/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-2006/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-7/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-8/etc/bashrc

$HOME/OpenFOAM/OpenFOAM-dev/etc/bashrc

OpenFOAM® shell environment

• You can have as many versions of OpenFOAM® as you like living together. You just need to

source the right environment variables. For instance, on my workstation I have nine versions

living together. Namely,

5

Tips and tricks in OpenFOAM®

OpenFOAM® shell environment

• If at any time I want to use a given version of OpenFOAM®, I just source the right OpenFOAM®

environment variables suing predefined aliases.

• This is how my .bashrc file looks like,

alias of24x='source /home/joegi/OpenFOAM/OpenFOAM-2.4.x/etc/bashrc'

alias of7='source /home/joegi/OpenFOAM/OpenFOAM-7/etc/bashrc’

alias of8='source /home/joegi/OpenFOAM/OpenFOAM-8/etc/bashrc'

alias ofdev='source /home/joegi/OpenFOAM/OpenFOAM-dev/etc/bashrc'

alias of2006='source /home/joegi/OpenFOAM/OpenFOAM-2006/etc/bashrc’

• If I want to start using OpenFOAM® version 8, I just type in the terminal of8.

• You can also have two different versions of OpenFOAM® running together at the same time in

different terminals.

• Just open the terminal and source the desired version.

6

Tips and tricks in OpenFOAM®

OpenFOAM® shell environment

• When switching from one OpenFOAM® version to another one, it is highly advisable to clear as
many OpenFOAM environment settings as possible, to do so you can use the script unset.sh.

In the terminal type:

• $> unset

• Be careful, there may be more than one unset.sh script. The OpenFOAM® specific script is

located in the directory $WM_PROJECT_DIR/etc/config.

• You can also use the alias wmUnset, which is set in the OpenFOAM® environment variables.

Remember, you can type alias in the terminal window to see all the aliases available.

• In the directory $WM_PROJECT_DIR/etc/config, you will also find many useful scripts.

• For instance, you can take a look at the script aliases.sh, in this script you will find all the

aliases defined in OpenFOAM®

7

Tips and tricks in OpenFOAM®

Looking for information in OpenFOAM® source code

• To locate files you can use the find command. For instance, if you want to locate a file that

contains the string fvPatch in its name you can proceed as follows,

• $> find $FOAM_SRC -name "*fvPatch*"

This command will locate the files containing the string "*fvPatch*" in the directory

$FOAM_SRC

• If you want to find a string inside a file, you can use the command grep

• $> grep -r -n LES $FOAM_SOLVERS

This command will look for the string LES in all files inside the directory $FOAM_SOLVERS.

The argument-r means recursive and -n will output the line number.

• To locate files you can use the find command. For instance, if you want to locate a file that

contains the string fvPatch in its name you can proceed as follows,

• $> find $FOAM_SRC -name "*fvPatch*"

This command will locate the files containing the string "*fvPatch*" in the directory

$FOAM_SRC

8

Tips and tricks in OpenFOAM®

Looking for information in OpenFOAM® source code

• If you want to find a string inside a file, you can use the command grep

• $> grep -r -n LES $FOAM_SOLVERS

This command will look for the string LES in all files inside the directory $FOAM_SOLVERS.

The argument-r means recursive and -n will output the line number.

• As you might already know, there are a gazillion dictionaries in OpenFOAM®. The easiest way

to find all of them is to do a local search in the installation directory as follows,

• For instance, if you are interested in finding all dictionary files that end with the "Dict"

word in the tutorials directory, in the terminal type:

• $> find $FOAM_TUTORIALS -name "*Dict"

• $> find $FOAM_TUTORIALS -iname "*dict"

9

Tips and tricks in OpenFOAM®

• A few more advanced commands to find information in your OpenFOAM® installation.

• To find which tutorial files use the boundary condition "slip":

• $> find $FOAM_TUTORIALS -type f | xargs grep -sl 'slip'

• To find where the source code for the boundary condition "slip" is located:

• $> find $FOAM_SRC -name "*slip*"

• To find what applications do not run in parallel

• $> find $WM_PROJECT_DIR -type f | xargs grep -sl 'noParallel'

• Remember, OpenFOAM® understand REGEX syntax.

Looking for information in OpenFOAM® source code

10

Tips and tricks in OpenFOAM®

OpenFOAM® Doxygen documentation

• The best source of information is the source code and the Doxygen documentation.

• The $WM_PROJECT_DIR/doc directory contains the Doxygen documentation of OpenFOAM®.

• Before using the Doxygen documentation, you will need to compile it. To compile the Doxygen

documentation, from the terminal:

• $> cd $WM_PROJECT_DIR

• $> ./Allwmake doc

Note: You will need to install doxygen and graphviz/dot

• After compiling the Doxygen documentation you can use it by typing:

• $> firefox file://$WM_PROJECT_DIR/doc/Doxygen/html/index.html

• The compilation is time consuming.

11

Tips and tricks in OpenFOAM®

Intensive IO

• If you are doing intensive IO or running big cases, I highly advise you to save the solution in

binary format.

• When using binary format, the IO is much faster, and the output files use less space.

• You can get a performance gain when you save in binary format as you minimize any

requirement for parsing.

• If OpenFOAM® binary format is not good enough for you, you can try another format.

• For instance you can use HDF5 format with OpenFOAM®.

http://openfoamwiki.net/index.php/Contrib/IOH5Write

• Know your hardware, intensive IO can slow-down your computations or crash your system, even

the most powerful supercomputers.

• For big simulations, most of the times the bottleneck is the IO.

• No need to say that eventually you will run out of space if you are working with big files.

• One naive solution to the IO bottleneck and big datasets space, do not save your solution very

often. But be careful, at least save your solution before stopping your solution or reaching the

job maximum time.

12

http://openfoamwiki.net/index.php/Contrib/IOH5Write

Tips and tricks in OpenFOAM®

Naming directories, files and variables

• By the way, I know it looks super cool, but try to avoid spaces or funny characters when naming

directories, files and variables, specially if you run in clusters. e.g.:

• my dictionary.dict instead use my_dictionary.dict

• #my_file;txt instead use my_file.txt

• my/solution!!! instead use my_solution

• working@home instead use working_at_home

• This is a dir instead use this_is_a_dir

• directory+1! instead use directory_1

• Also, I do not recommend you to use underscore as the first character when naming your files or
directories

• _my_dir instead use my_dir

• _my_file instead use my_file

13

Tips and tricks in OpenFOAM®

Running in a cluster

• Best advice, familiarize with your hardware.

• Do not get overwhelm when running in a cluster.

• Running OpenFOAM® in a cluster is not different from running in your workstation or portable

computer.

• The only difference is that you need to schedule your jobs.

• Depending on the system current demand of resources, the resources you request and your job

priority, sometimes you can be in queue for hours, even days, so be patient and wait for your

turn.

• Consequently, remember to always double or triple check your scripts.

• It will be a waste of time if after two days in queue, your simulation did not start because there

were errors in your scripts.

• For those running on fancy clusters, such as blue gene supercomputers, I have found a

processor limit of 512, after that, is quite difficult to get any improvement.

• Also, the IO is really time consuming.

14

Tips and tricks in OpenFOAM®

OpenFOAM® mesh quality and checkMesh utility

• Before running a simulation remember to always check the mesh quality using the checkMesh

utility.

• Remember, good quality meshes are of paramount importance to obtain accurate results.

• checkMesh will also check for topological errors.

• Have in mind that topological errors must be repaired.

• You will be able to run with mesh quality errors (such as skewness, aspect ratio, minimum face

area, and non-orthogonality), but they will severely tamper the solution accuracy and can made

the solver run super slow or even blow-up.

• In my personal experience, I have found that OpenFOAM® is very picky when it comes to mesh
quality. So if checkMesh is telling you that the mesh is bad, you better correct those errors.

• Unfortunately, to correct mesh quality errors you will have to remesh the geometry.

15

Tips and tricks in OpenFOAM®

OpenFOAM® mesh quality and checkMesh utility

• If for any reason checkMesh finds errors, it will give you a message and it will tell you what

check failed.

• It will also write a set with the faulty cells, faces, and/or points. These sets are saved in the
directory constant/polyMesh/sets/

• If at any point you want to visualize the failed faces/cells/points you will need to convert them to
VTK format using the utility foamToVTK.

• At the end, foamToVTK will create a directory named VTK, where you will find the failed

faces/cells/points in VTK format. At this point you can use paraFoam or paraview to

visualize the failed sets.

• I want to emphasize the fact that you will be able to run with mesh quality errors such as

skewness, aspect ratio, minimum face area, and non-orthogonality.

• However, they will severely tamper the solution accuracy and can made the solver explode.

16

Tips and tricks in OpenFOAM®

• If you want to know the quality metrics hard-wired in OpenFOAM®, just read the file
$WM_PROJECT_DIR/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/p

rimitiveMeshCheck.C. Their maximum (or minimum) values are defined as follows:

OpenFOAM® mesh quality and checkMesh utility

36 Foam::scalar Foam::primitiveMesh::closedThreshold_ = 1.0e-6;

37 Foam::scalar Foam::primitiveMesh::aspectThreshold_ = 1000;

38 Foam::scalar Foam::primitiveMesh::nonOrthThreshold_ = 70; // deg

39 Foam::scalar Foam::primitiveMesh::skewThreshold_ = 4;

40 Foam::scalar Foam::primitiveMesh::planarCosAngle_ = 1.0e-6;

• By the way, if you are not happy with these values, you can just change them and voila, your

quality problems are solved (I am kidding of course).

• Before running a simulation, I highly recommend you to use the renumberMesh utility.

• This utility will renumber the mesh to minimize its bandwidth, in other words, it will make the

linear solver run faster (at least for the first time-steps)

• Summarizing, before running a simulation remember to always check the mesh quality using
checkMesh and then reduce the mesh bandwidth by using the renumberMesh.

• This is a good standard practice, I always do it (at least for big meshes).

• Before running a simulation, try to always get a good quality mesh. Remember, garbage in –

garbage out. Or in a positive way, good mesh – good results. 17

Tips and tricks in OpenFOAM®

Boundary conditions

• Boundary conditions should be physically realistic.

• They must represent the physics involved.

• Minimize grid skewness, non-orthogonality, growth rate, and aspect ratio near the boundaries.

• You do not want to introduce diffusion errors early in the simulation, especially close to the

inlets.

• In few words, get a good quality mesh at the boundaries.

• Remember, for each single variable you are solving you need to specify a boundary condition.

• Try to avoid large gradients in the direction normal to the boundaries near inlets and outlets.

• That is to say, put your boundaries far away from where things are happening.

• Do not force the flow at the outflow, use a zero normal gradient for all flow variables except

pressure. The solver extrapolates the required information from the interior.

• Be careful with backward flow at the outlets (flow coming back to the domain) and backward

flow at inlet (reflection waves), they require special treatment.

18

Tips and tricks in OpenFOAM®

Initial conditions

• First of all, a good initial condition can improve the stability and convergence rate.

• On the other hand, unphysical boundary conditions can slow down the convergence rate or can

cause divergence.

• As for boundary conditions, for each single variable you are solving you need to specify initial

conditions.

• When it is possible, use potentialFoam to get an initial solution.

• It is computational inexpensive.

• potentialFoam can also give you a good idea of the sensitivity of the mesh quality.

• If the residuals stall after 2-3 iterations, it means that your meshis sensitive to

gradients.

• You can also get a computational inexpensive solution on a coarse mesh and then interpolate it

to a fine mesh.

• This will be a very good initial solution only if the solution in the coarse mesh is acceptable.

19

Tips and tricks in OpenFOAM®

Initial conditions

• By the way, do not forget to use a good quality coarse mesh.

• Use mapFields to map the solution from a coarse mesh to a finer mesh.

• It also works the other way around, but I do not see any reason to do that.

• If you are using a turbulence model, you can initialize the velocity and pressure fields from the

solution obtained from a laminar case.

• If you are running an unsteady simulation and if the initial transient is of no interest, you can

initialize your flow using the solution obtained from a steady simulation.

• Always try to get initial conditions that are close to the solution.

• I know this is difficult to achieve as we do not know the solution, if we knew the

solution we would not have a job.

• I want to remind you again; initial conditions should be physically realistic.

20

Tips and tricks in OpenFOAM®

Starting and running a simulation

• Remember, you can change the parameters in the dictionaries controlDict, fvSchemes and

fvSolution on-the-fly (and most of the dictionaries in the case directory).

• But you will need to set the keyword runTimeModifiable to yes in the controlDict dictionary.

• When starting a simulation and if the initial transient is of no interest, you can start the simulation

by using a high value of viscosity (low Reynolds number), and as the simulation runs you can

slowly change the value until you reach the desired value.

• If you are working with high Reynolds numbers and you do not like the trick of increasing the

viscosity, you can get a very good initial solution using an Euler solver with upwind.

• You can also start the simulation by using a first order scheme and then switch to a high order

scheme.

• Scaling the inlet velocity values can help to improve the convergence rate.

• That is to say, increase slowly the inlet velocity until you reach the desired value.

• By proceeding in this way, the body will not see the maximum instantaneous velocity at the first

iteration.

21

Tips and tricks in OpenFOAM®

Starting and running a simulation

• To accelerate the iterative convergence, you can change the convergence criterion of the linear

solvers on-the-fly.

• For instance, you can start using a not so tight convergence criterion with a robust numerical

scheme, and as the simulation runs you can tighten the convergence criterion to increase the

accuracy.

• When the simulation starts, I usually use more correctors steps (for PISO and PIMPLE

methods), and as the solution advance or stabilizes I decrease the number of corrector steps,

but I always use at least one corrector step.

• Remember to always check the time step continuity errors. T

• This number should be small (negative or positive), if it increases in time for sure something is

wrong.

• If you want to know how the continuity errors are computed just type in the terminal find

$FOAM_SRC –iname *continuity*, and open any of the files.

22

Tips and tricks in OpenFOAM®

Discretization schemes

• Never get a final solution using first order schemes.

• They are too diffusive, which means they will under predict the forces and smear the gradients.

• However, first order schemes are extremely robust, so you might be tented to use them as they

will always give you a solution.

• You can start using a first order scheme, and then switch to a high order scheme.

• Remember, you can change the parameters on the fly.

• This means, start robustly and end with accuracy.

• By the way, high-order and high-resolution schemes need a good quality mesh.

• Bad quality meshes will add numerical oscillations and reduce the accuracy of the numerical

solution.

• If you have a good mesh and a good initial solution, you can start immediately with a high-

order scheme, but be careful, remember to always check the stability of the solution.

23

Tips and tricks in OpenFOAM®

Discretization schemes

• If at one point your solution starts to oscillate, you can switch to upwind and let the simulation

stabilize, then you can switch back to high-order accuracy.

• Have in mind that this behavior is telling you that something is happening, so you better adjust

other parameters, such as, solver tolerances, non-orthogonal corrections, number of correctors,

gradient discretization and so on.

• Try to always use a good quality mesh. Avoid the GIGO syndrome.

• In the next slides I will show you how I usually setup the discretization schemes.

24

Tips and tricks in OpenFOAM®

Discretization schemes – Convective terms

• A robust numerical scheme but too diffusive (first order accurate),

divSchemes

{

div(phi,U) Gauss upwind;

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

25

Tips and tricks in OpenFOAM®

• An accurate and stable numerical scheme (second order accurate),

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss linearUpwind grad(omega);

div(phi,k) Gauss linearUpwind grad(omega);

div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

Discretization schemes – Convective terms

26

Tips and tricks in OpenFOAM®

• An even more accurate but oscillatory scheme (second order accurate),

Discretization schemes – Convective terms

divSchemes

{

div(phi,U) Gauss linear;

div(phi,omega) Gauss limitedLinear 1;

div(phi,k) Gauss limitedLinear 1;

div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

27

Tips and tricks in OpenFOAM®

• By the way, do not get lost with all the convective terms implemented in OpenFOAM®.

• Last time I checked there were more than 50.

• These are the convective discretization schemes that you will use most of the times:

• upwind: first order accurate.

• linearUpwind: second order accurate, bounded.

• linear: second order accurate, unbounded.

• A good TVD scheme (vanLeer or Minmod): TVD, second order accurate, bounded.

• limitedLinear: second order accurate, unbounded, but more stable than pure linear.

Recommended for LES simulations (kind of similar to the Fromm method).

• Remember,

• First order methods are bounded and stable but diffusive.

• Second order methods are accurate, but they might become oscillatory.

• At the end of the day, we always want a second order accurate solution.

Discretization schemes – Convective terms

28

laplacianSchemes

{

default Gauss linear limited ;

}

Tips and tricks in OpenFOAM®

• For the discretization of the diffusive terms, you can use a fully orthogonal scheme,

Discretization schemes – Diffusive terms

laplacianSchemes

{

default Gauss linear corrected;

}

• You can also use a scheme that uses a blending between a fully orthogonal scheme and a non-

orthogonal scheme,

29

Tips and tricks in OpenFOAM®

• The method you use highly depends on the quality of the mesh.

• For meshes with low non-orthogonality you can use the corrected scheme or the limited 1

scheme.

• For meshes with high non-orthogonality you can use the limited scheme. The higher the
non-orthogonality the lower the value of the blending factor .

0 1
• Good quality mesh

• Orthogonal corrections

• Unbounded on low quality meshes

• Bad quality mesh

• Non-orthogonal corrections

• Bounded on low quality meshes

Discretization schemes – Diffusive terms

30

Tips and tricks in OpenFOAM®

• In summary:

• By setting the blending factor equal to 0 is equivalent to using the uncorrected method.

You give up accuracy but gain stability (not so much though).

• If you set the blending factor to 0.5, you get the best of both worlds. In this case, the non-

orthogonal contribution does not exceed the orthogonal part. You give up accuracy but gain

stability.

• For meshes with non-orthogonality less than 70, you can set the blending factor to 1.

• For meshes with non-orthogonality between 70 and 85, you can set the blending factor to

0.5

• For meshes with non-orthogonality more than 85, it is better to get a better mesh. But if

you definitely want to use that mesh, you can set the blending factor to 0.333-0.5, and

increase the number of non-orthogonal corrections.

• If you are doing LES or DES simulations, use a blending factor of 1 (this means that you

need good meshes).

Discretization schemes – Diffusive terms

31

Tips and tricks in OpenFOAM®

• An accurate numerical scheme on orthogonal meshes (this is a very good quality mesh with

uniform cell size, this is what we want),

laplacianSchemes

{

default Gauss linear orthogonal;

}

snGradSchemes

{

default orthogonal;

}

Discretization schemes – Diffusive terms

32

Tips and tricks in OpenFOAM®

• An accurate numerical scheme on non-uniform orthogonal meshes (with non-orthogonal

corrections),

laplacianSchemes

{

default Gauss linear limited 1;

}

snGradSchemes

{

default limited 1;

}

Discretization schemes – Diffusive terms

33

Tips and tricks in OpenFOAM®

• A less accurate numerical scheme valid on non-uniform non-orthogonal meshes (with non-

orthogonal corrections),

laplacianSchemes

{

default Gauss linear limited 0.5;

}

snGradSchemes

{

default limited 0.5;

}

Discretization schemes – Diffusive terms

34

Tips and tricks in OpenFOAM®

• Let us talk about the gradSchemes, this entry defines the way we compute the gradients.

• The gradients can be computed using the Gauss method or the least squares method.

• The keywords are:

• Gauss linear;

• leastSquares;

• In practice, the leastSquares method is more accurate, however, I have found that it tends to be

more oscillatory on tetrahedral meshes.

• By the way, there more methods implemented in OpenFOAM®, but these are the most

commonly used.

• Also, all of the gradient discretization schemes are at least second order accurate.

Discretization schemes – Gradient terms

35

• You can also use gradient limiters.

• Gradient limiters will avoid over and under shoots on the gradient computations. They increase

the stability of the method but add diffusion due to clipping.

• There are four available,

Tips and tricks in OpenFOAM®

Discretization schemes – Gradient terms

• The following entry corresponds to the leastSquares method using gradient limiters

cellMDLimited leastSquares 1.0;

cellMDLimited

cellLimited

faceMDLimited

faceLimited

Less diffusive

More diffusive

Note: for smooth field variation, cell

limiting may provide less numerical

dissipation on meshes with skewed

cells

36

Tips and tricks in OpenFOAM®

• Gradient limiters avoid over and under shoots on the gradient computations.

• The gradient limiter implementation in OpenFOAM®, uses a blending factor .

gradSchemes

{

default cellLimited Gauss linear ;

}

0 1
More stability but less accuracy

Limiter on – Very aggressive
More accuracy but less stability

Limiter off

Discretization schemes – Gradient terms

37

Tips and tricks in OpenFOAM®

Discretization schemes – Gradient terms

• When running steady simulations, sometimes it may happen that the residuals get stalled.

• This is a well documented behavior related to the nature of non-differentiable slope limiters, as

the one implemented in OpenFOAM® (Minmod).

• Sometimes it might help using a differentiable slope limiter.

• In OpenFOAM®, you have the following options:

• grad(U) cellLimited<Venkatakrishnan> Gauss linear 1;

• grad(U) cellLimited<cubic> 1.5 Gauss linear 1;

• In general, the cubic slope limiter is preferred over the Venkatakrishnan one.

• Finally, be carefully not to be too aggressive with the pressure gradient as it might add some

diffusion to your solution. You will see this effect when computing the forces.

• It is a good idea to use the following setup for pressure gradient,

• grad(p) Gauss linear 0.5;

38

Tips and tricks in OpenFOAM®

Discretization schemes – How to choose the schemes

• If after checking the mesh quality, the non-orthogonality is higher than 80, I prefer to redo the

mesh and improve the quality.

• If you are running LES simulations, do not even think about running in highly non-orthogonal

meshes. Better spend more time in getting a good quality mesh, maybe with non-orthogonality

less than 75.

• Do not try to push too much the numerical scheme on highly non-orthogonal meshes.

• You already know that the quality is low, so this highly influence the accuracy and stability of the

solution. Specially the gradient computations.

• I do not like to run simulations on highly orthogonal meshes, but if I have to use a mesh with

high non-orthogonality, I often use the following numerical scheme.

39

Tips and tricks in OpenFOAM®

• Non-orthogonality more than 85. I do not waste my time, I prefer to go back and get a better

mesh.

• I do not like to run simulations on highly orthogonal meshes, but if I have to use a mesh with

high non-orthogonality, I often use the following numerical scheme.

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) faceLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss upwind;

div(phi,k) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.333;

}

snGradSchemes

{

default limited 0.333;

}

Discretization schemes – How to choose the schemes

40

Tips and tricks in OpenFOAM®

• Non-orthogonality between 70 and 85

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) cellLimited Gauss linear 1.0;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.5;

}

snGradSchemes

{

default limited 0.5;

}

Discretization schemes – How to choose the schemes

41

Tips and tricks in OpenFOAM®

• Non-orthogonality between 60 and 70

gradSchemes

{

default cellMDLimited Gauss linear 0.5;

grad(U) cellMDLimited Gauss linear 0.5;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 0.777;

}

snGradSchemes

{

default limited 0.777;

}

Discretization schemes – How to choose the schemes

42

Tips and tricks in OpenFOAM®

• Non-orthogonality between 40 and 60

gradSchemes

{

default cellMDLimited Gauss linear 0;

grad(U) cellMDLimited Gauss linear 0.333;

}

divSchemes

{

div(phi,U) Gauss linearUpwind grad(U);

div(phi,omega) Gauss linearUpwind default;

div(phi,k) Gauss linearUpwind default;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1.0;

}

snGradSchemes

{

default limited 1.0;

}

Discretization schemes – How to choose the schemes

43

Tips and tricks in OpenFOAM®

• I guess at this point you know how to adjust the numerical scheme for meshes with non-

orthogonality less than 40.

• Additionally, I also change the number of non-orthogonal corrections.

• Non-orthogonality between 70 and 85:

nNonOrthogonalCorrectors 3;

• Non-orthogonality between 60 and 70:

nNonOrthogonalCorrectors 2;

• Non-orthogonality less than 60:

nNonOrthogonalCorrectors 1;

• I always like to do at least one non orthogonal correction.

Discretization schemes – How to choose the schemes

44

• In plain English, this means that the new value of the variable depends upon the old value,

the computed change of , and the under-relaxation factor .

Tips and tricks in OpenFOAM®

Under-relaxation factors

• Because of the non-linearities of the equations being solved, it is necessary to control the

change of . This is achieved by under-relaxation as follows,

here is the relaxation factor,

Means under-relaxation. This will slow down the convergence

rate but increases the stability.

Means no relaxation at all. We simple use the predicted value of .

Means over-relaxation. It can sometimes be used to accelerate

convergence rate but will decrease the stability.

45

Tips and tricks in OpenFOAM®

• Under-relaxation factors (URF) are typical of steady solvers using the SIMPLE family of

methods.

• To find out what are and how to change the URF requires experience and understanding.

• In general, URF are there to suppress oscillations.

• Small URF will significantly slow down convergence. Sometimes to the extent that the user

thinks the solution is converged when in reality is not.

• The recommendation is to always use URF that are as high as possible, without resulting in

oscillations or divergence.

• I highly recommend you to use the default URF (industry standard).

• If you have to change the URF, start by decreasing the values of the URF (one at a time) in

order to improve the stability of the solution.

• Remember, low under-relaxation factors will slow down the solver while high under-relaxation

factors will speed up the computation, but you will give up stability.

• In order to find the optimal URF for your case, it will take some trial and error.

Under-relaxation factors

46

Tips and tricks in OpenFOAM®

Under-relaxation factors

0 1

relaxationFactors

Velocity

• Selecting the under-relaxation factors it is kind of equivalent to selecting the right time step.

• The under-relaxation factors are bounded between 0 and 1.

Stability

47

• These are the under-relaxation factors I often use (which by the way are the industry standard).

Tips and tricks in OpenFOAM®

Under-relaxation factors

• According to the physics involved you will need to add more under-relaxation factors.

• Finding the right URF involved experience and some trial and error.

• Selecting the URF it is kind of equivalent to selecting the right time step

• If you do not define the URF, they will be set to 1.0 by default. That is, no under-relaxation.

• It is a good idea to start a steady simulation with low URF (about 0.1), and then increase them

slowly until reaching the desired value.

p 0.3;

U 0.7;

k 0.7;

omega 0.7;

p 1; Usually does not require under-relaxing

U 0.9;

k 0.9;

omega 0.9;

SIMPLE SIMPLEC

48

Tips and tricks in OpenFOAM®

Linear solvers

• The linear solvers are defined in the fvSolution dictionary.

• You will need to define a solver for each variable you are solving.

• The solvers can be modified on the fly.

• The GAMG solver (generalized geometric-algebraic multigrid solver), can often be the optimal

choice for solving the pressure equation.

• However, I have found that when using more than 1024 processors is better to use Newton-

Krylov type solvers.

• When solving multiphase problems, I have found that the GAMG solver might give problems

when running in parallel, so be careful.

• The problem is mainly related to nCoarsestCells keyword, so usually I have to set a high value

of cells (in the order 1000).

• The utility renumberMesh can dramatically increase the speed of the linear solvers, specially

during the initial iterations.

• I usually start by using a not so tight convergence criterion and as the simulation runs, I tight the

convergence criterion.

49

Tips and tricks in OpenFOAM®

• These are the linear solvers I often use.

• For the pressure equation I usually start with a tolerance equal to 1e-6 and relTol equal to 0.01.

After a while I change these values to 1e-6 and 0.0 respectively.

p

{

solver GAMG;

tolerance 1e-6;

relTol 0.01;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 1000;

mergeLevels 1;

}

Linear solvers

50

Tips and tricks in OpenFOAM®

• These are the linear solvers I often use.

• For the pressure equation I usually start with a tolerance equal to 1e-6 and relTol equal to 0.01.

After a while I change these values to 1e-6 and 0.0 respectively.

p

{

solver GAMG;

tolerance 1e-6;

relTol 0.0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 1000;

mergeLevels 1;

}

Linear solvers

51

Tips and tricks in OpenFOAM®

• These are the linear solvers I often use.

• If I do not use the GAMG solver for the pressure, I often use the PCG solver.

• For the pressure equation I usually start with a tolerance equal to 1e-6 and relTol equal to 0.01.

After a while I change these values to 1e-6 and 0.0 respectively.

• If the speed of the solver is too slow, I change the convergence criteria to 1e-4 and relTol equal

to 0.05. I usually do this during the first iterations.

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-4;

relTol 0.05;

}

Linear solvers

52

Tips and tricks in OpenFOAM®

• These are the linear solvers I often use.

• For the velocity equation I always use a tolerance equal to 1e-8 and relTol equal to 0.0

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-8;

relTol 0.0;

}

Linear solvers

53

Tips and tricks in OpenFOAM®

• I like to set the minimum number of iterations to three, especially for the pressure.

• If your solver is doing too many iterations, you can set the maximum number of iterations. But

be careful, if the solver reach the maximum number of iterations it will stop, we are talking about

unconverged iterations.

• You can set the maximum number of iterations specially during the first time-steps where the

solver takes longer.

• I use minIter and maxIter on symmetric and asymmetric matrix solvers.

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.01;

minIter 3;

maxIter 100;

}

Linear solvers

54

Tips and tricks in OpenFOAM®

• The default option is the conventional segregated solution. That is, you first solve for velocity

component X, then velocity component Y, and finally velocity component Z.

• You can get some improvement in terms of stability and turn around time by using the coupled

matrix solver for vectors and tensors, i.e., if you are solving the velocity field, you solve all the

velocity components at once.

• To select the coupled solver you need to use the keyword coupled in the fvSolution

dictionary.

• In the coupled matrix solver you set tolerance as a vector (absolute and relative)

U

{

type coupled;

solver cPBiCCCG;

preconditioner DILU;

tolerance (1e-08 1e-08 1e-08);

relTol (0 0 0);

minIter 3;

}

Linear solvers

55

Tips and tricks in OpenFOAM®

• Remember, you must do at least one corrector step when using PISO solvers.

• When you use the PISO and PIMPLE solvers, you also have the option to set the tolerance for

the final corrector step (.*Final).

• By proceeding in this way, you can put all the computational effort only in the last corrector step

(.*Final).

pFinal

{

solver GAMG;

tolerance 1e-06;

relTol 0.0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 1000;

mergeLevels 1;

}

Linear solvers

56

Tips and tricks in OpenFOAM®

• By proceeding in this way, you can put all the computational effort only in last corrector step

(.*Final).

• For all the intermediate corrector steps, you can use a more relaxed convergence criterion.

• For example, you can use the following solver and tolerance criterion for all the intermediate

corrector steps (p), then in the final corrector step (pFinal) you tight the solver tolerance.

p

{

solver GAMG;

tolerance 1e-04;

relTol 0.01;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 1000;

mergeLevels 1;

}

pFinal

{

solver GAMG;

tolerance 1e-06;

relTol 0.0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 1000;

mergeLevels 1;

}

Linear solvers

57

Tips and tricks in OpenFOAM®

Additional notes on the fvSolution dictionary

• For the fvSolution dictionary:

momentumPredictor yes;

nOuterCorrectors 1;

nCorrector 3;

nNonOrthogonalCorrectors 1;

turbOnFinalIterOnly false;

Set to yes for high Reynolds flows, where

convection dominates (default value is yes)

Recommended to use at least 3 correctors.

It improves accuracy and stability. Use 4 or

more for highly transient flows or strongly

coupled problems..

Recommend to use at least 1 corrector.

Increase the value for bad quality meshes.

Recommended value is 1 (equivalent to PISO).

Increase to improve the stability of second

order time discretization schemes (LES

simulations). Increase for strongly coupled

problems.

Flag to indicate whether to solve the turbulence

on the final pimple iteration only. For SRS

simulations the recommended value is false

(the default value is true)

58

Tips and tricks in OpenFOAM®

Transient simulations and time-step selection

• Remember, the fact that we are using an implicit solver (unconditionally stable), does not mean

that we can choose a time step of any size.

• The time-step must be chosen in such a way that it resolves the time-dependent features and it

maintain the solver stability.

59

Tips and tricks in OpenFOAM®

Transient simulations and time-step selection

• Comparison of PISO with non-iterative time-advancement (PISO-NITA) against PISO with

Iterative time-advancement (PISO-ITA)

60

PISO-NITA PISO-ITA (PIMPLE in OpenFOAM®)

Tips and tricks in OpenFOAM®

• In my personal experience, I have been able to go up to a CFL = 5.0 while maintaining the

accuracy.

• To achieve this I had to increase the number of outer corrector steps in the PIMPLE solver,

decrease the under-relaxation factors and tightening the convergence criteria; and this

translates into a higher computational cost.

• I have managed to run with CFL numbers up to 1000, but this highly reduces the accuracy of the

solution. Also, it is quite difficult to maintain the stability of the solver.

• As I am often interested in the unsteadiness of the solution, I usually use a CFL number not

larger than 4.0.

• If accuracy is the goal (e.g., predicting forces), definitively use a CFL less than 1.0.

• If you are doing LES simulations, I highly advice you to use a CFL less than 0.6 and if you can

afford it, less than 0.3

• If you are doing LES or you are interested in the accurate prediction of forces, definitely you

need high quality meshes, preferable made of hexahedral elements.

• I usually use the PIMPLE solver. In the PIMPLE solver you have the option to limit your time-

step to a maximum CFL number, so the solver automatically choose the time-step. This is a

very cool feature.

Transient simulations and time-step selection

62

Tips and tricks in OpenFOAM®

• In the PISO solver you need to give the time-step size. So basically you need to choose your

time-step so it does not exceed a target CFL value.

• You can easily modify the PISO solver so it automatically choose the time-step according to a

maximum CFL number, you just need to add one line of code.

• Remember, setting the keyword nOuterCorrectors equal to 1 in the PIMPLE solver is

equivalent to use the PISO solver.

• The PIMPLE solver is a solver specially formulated for large time-steps. So in order to increase

the stability you will need to add more corrector steps (nOuterCorrectors and nCorrectors).

• Remember, you need to do add least one nCorrector when using the PISO method.

• A smaller time-step may be needed in the first iterations to maintain solver stability. Have in mind

that the first time steps may take longer to converge, do not be alarmed of this behavior, it is

perfectly normal.

• If you are interested in the initial transient, you should start using a high order discretization

scheme, with a tight convergence criterion, and the right flow properties.

• If you start from an approximate initial solution obtained from a steady simulation, the initial

transient will not be accurate.

• If the solution is not converging or is taking too long to converge, try to reduce your time-step.

Transient simulations and time-step selection

63

Tips and tricks in OpenFOAM®

• If you use the first order Euler scheme, try to use a CFL number less than 2.0 and preferably in

the order of 0.6-0.9, this is in order to keep temporal diffusion to a minimum.

• Yes, numerical diffusion also applies in time.

• In order to speed up the computation and if you are not interested in the initial transient, you can

start using a large time-step (high CFL).

• When you are ready to sample the quantity of interest, reduce the time-step to get a CFL less

than one and let the simulation run for a while before doing any sampling.

• My recommendation is to always monitor your solution, and preferably use the PIMPLE solver

with no under-relaxation.

• When using the PIMPLE or PISO solver (with maximum CFL feature enable), the solver will use
as a time-step for the first iteration the value set by the keyword deltaT in the controlDict

dictionary. So if you set a high value, is likely that the solver will explode.

• My advice is to set a low deltaT and then let the solver gradually adjust the time-step until the

desired maximum CFL is reached.

Transient simulations and time-step selection

64

Tips and tricks in OpenFOAM®

• Some fancy high-resolution numerical schemes (such as the vanLeer, vanAlbada, superbee,

MUSCL, OSPRE – cool names no –), are hard to start.

• So it is better to begin with a small time-step and increase it gradually.

• And by small time-step I mean a time-step that will give you a CFL about 0.5.

• Remember, you can change the temporal discretization on the fly.

• As for the spatial discretization, first order schemes are robust, and second order schemes are

accurate.

• The temporal discretization schemes are set in the fvSchemes dictionary. To select the

schemes you need to use the keyword ddtSchemes.

• Euler: time dependent first order (implicit/explicit), bounded.

• backward: time dependent second order (implicit), bounded/unbounded. Similar to

the linear multistep Adams-Moulton scheme.

• CrankNicolson: time dependent second order (implicit), bounded/unbounded.

Transient simulations and temporal discretization schemes

65

Tips and tricks in OpenFOAM®

• It you do not know what temporal discretization scheme to use, go for the Crank-Nicolson.

• The Crank-Nicolson as it is implemented in OpenFOAM®, uses a blending factor .

• Setting equal to 0 is equivalent to running a pure Euler scheme (robust but first order

accurate). By setting the blending factor equal to 1 you use a pure Crank-Nicolson (accurate

but oscillatory, formally second order accurate).

• If you set the blending factor to 0.5, you get something in between first order accuracy and

second order accuracy, or in other words, you get the best of both worlds.

ddtSchemes

{

default CrankNicolson ;

}

Transient simulations and temporal discretization schemes

• Most of the time, a value of 0.7 is a good compromise.

66

Tips and tricks in OpenFOAM®

• The Crank-Nicolson as it is implemented in OpenFOAM®, uses a blending factor .

ddtSchemes

{

default CrankNicolson ;

}

0 1

Pure Crank-Nicolson

2nd order, bounded/unboudned

Pure Euler

1st order, bounded

Transient simulations and temporal discretization schemes

67

Tips and tricks in OpenFOAM®

On turbulence modeling

• Compute Reynolds number and determine whether the flow is turbulent.

• Try to avoid using turbulent models with laminar flows.

• Choose the near-wall treatment and estimate y normal distance before generating the mesh.

• Run the simulation for a few time steps and get a better prediction of y+ and correct your initial

prediction of y.

• The realizable or SST models are good choices for general applications.

• The standard model is very reliable, you can use it to get initial values for more

sophisticated models.

• Remember, OpenFOAM® implementation force you the use of wall functions.

• If you are interesting in resolving the large eddies and the inertial range, and modeling the

smallest eddies, DES or LES are the right choice.

• If you do not have any restriction in the near wall treatment method, use wall functions.

• Avoid strong oscillations of the turbulent variables.

68

Tips and tricks in OpenFOAM®

On turbulence modeling

• If you are doing LES or DES, remember that these models are intrinsically 3D and unsteady.

• In LES you should choose your time-step in such a way to get a CFL of less than 1 and

preferably of about 0.5 for LES.

• DES simulations can use larger CFL values (up to 4 for reasonable accuracy).

• If you are doing RANS, it is perfectly fine to use upwind to discretize the turbulence closure

equations.

• After all, turbulence is a dissipative process. However, some authors may disagree with this,

make your own conclusions.

• On the other hand, if you are doing LES you should keep numerical diffusion to the minimum, so

you should use second order methods.

• LES methods can be sensitive to mesh element type; it is highly recommended to use

hexahedral meshes.

• Avoid the use of adaptive time-stepping and adaptive save intervals, as they may introduce

oscillations in your solution.

• Many times RANS simulation can mysteriously explode, if this is your case, try reducing the

URF of the turbulent quantities to something around 0.5 or even less.

69

Tips and tricks in OpenFOAM®

Notes on convergence

• Determining when the solution is converged can be really difficult, especially if you are new to

CFD.

• Solutions can be considered converged when the flow field and scalar fields are no longer

changing, but usually this is not the case for unsteady flows.

• Most flows in nature and industrial applications are highly unsteady.

• It is a good practice to monitor the residuals.

• But be careful, residuals are not always indicative of a converged solution.

• The final residuals will reach the tolerance criterion in each iteration, but the flow field may be

continuously changing from instant to instant.

• In order to properly assess convergence, it is also recommended to monitor a physical quantity.

• If this physical quantity does not change in time you may say that the solution is converge.

• But be careful, it can be the case that the monitored quantity exhibit a random oscillatory

behavior or a periodic oscillatory behavior.

• In the former case you are in the presence of a highly unsteady and turbulent flow with no

periodic behavior; in latter case, you may say that you have reached a converged periodic

unsteady solution.

70

Tips and tricks in OpenFOAM®

• Remember, for unsteady flows you will need to analyze/sample the solution in a given time

window. Do not take the last saved solution as the final answer.

• If your goal is predicting forces (e.g., drag prediction); you should monitor the forces and use

them as your convergence criterion.

• The convergence depends on the mesh quality, so a good quality mesh means faster

convergence and accurate solution.

• In general, overall mass balance should be satisfied.

• Remember, the method is conservative. What goes in, goes out (unless you have source

terms).

• However, the method is not bounded, so to avoid spurious oscillation remember to use limiters.

• Residuals are not your solution. Low residuals do not automatically mean a correct solution, and

high residuals do not automatically mean a wrong solution.

• Initial residuals are often higher with higher order discretization schemes than with first order

discretization. That does not mean that the first order solution is better.

• Always ensure proper convergence before using a solution. A not converged solution can be

misleading when interpreting the results.

Notes on convergence

71

Tips and tricks in OpenFOAM®

Notes on convergence

72

Tips and tricks in OpenFOAM®

Notes on convergence

73

Tips and tricks in OpenFOAM®

Monitoring minimum and maximum values of field variables

• I always monitor the minimum and maximum values of the field variables (you can do this using

functionObjects).

• For me this is the best indication of stability and accuracy.

• If at one point of the simulation velocity is higher that the speed of light (believe me, that can

happen), you know that something is wrong.

• And believe me, with upwind you can get solutions at velocities higher that the speed of light,

you can even do coffee if you want.

• You can also see an oscillatory behavior of the minimum and maximum values of the monitored

quantity. This is also an indication that something is going bananas.

• For some variables (e.g. volume fraction), the method must be bounded.

• This means that the values should not exceed some predefined minimum or maximum value

(usually 0 and 1).

74

Tips and tricks in OpenFOAM®

Mesh quality and cell type

• I do not know how much to stress this, but try to always use a good quality mesh.

• Remember, garbage in - garbage out.

• Or in a positive way, good mesh – good results.

• Use hexahedral meshes whenever is possible, specially if high accuracy in predicting forces is

your goal (e.g., drag prediction).

• For the same cell count, hexahedral meshes will give more accurate solutions, especially if the

grid lines are aligned with the flow.

• But this does not mean that tetra mesh are no good, by carefully choosing the numerical

scheme, you can get the same level of accuracy. The problem with tetra meshes are mainly

related to the way gradients are computed.

• Tetra meshes normally need more computing resources during the solution stage. But his can

be easily offset by the time saved during the mesh generation stage.

• If the geometry is slightly complicated, it is just a waste to spend time on hex meshing. Your

results will not be better, most of time, if not always.

• With todays advances in HPC and numerical methods, the computing time saved with hex mesh

is marginal compared with time wasted in mesh generation.

75

Tips and tricks in OpenFOAM®

• Increasing the cells count will likely improve the solution accuracy, but at the cost of a higher

computational cost.

• But attention, finer mesh does not mean a better mesh.

• Very often when you refine your mesh (specially when it is done automatically), the overall

quality of the mesh is reduced due to clustering and stretching of the mesh.

• Change in cell size should be smooth.

• In boundary layers, quad, hex, and prism/wedge cells are preferred over triangles, tetrahedras,

or pyramids.

• The mesh density should be high enough to capture all relevant flow features.

• A good mesh should be done in such a way that it resolve the physics of interest and it is

adequate for the models used, and not in the fact that the more cells we use the better the

accuracy.

• A good mesh resolve physics, and does not need to follow the CAD model. We are talking

about geometry defeaturing, you do not need to resolve all features of your CAD model.

Mesh quality and cell type

76

Tips and tricks in OpenFOAM®

• There is a new type of meshes in town, polyhedral meshes.

• Many meshing guys and CFDers claim that polyhedral meshes are the panacea of meshing.

• In polyhedral meshes the cells have more neighbors than in tetrahedral and/or hexahedral

meshes, hence the gradients are approximated better on polyhedral meshes.

• But attention, this does not mean that this kind of meshes are the solution to all meshing

problems, is just a new religion in the meshing and CFD community, you need to become a true

believer.

• Another interesting property of polyhedral meshes is that they reduce the cell count. But there is

a catch, they increase the number of faces so you need to compute more fluxes (diffusive and

convective).

• Polyhedral meshes are not easy to generate, most of the times you need to start from

tetrahedral meshes.

Mesh quality and cell type

77

Tips and tricks in OpenFOAM®

• In my personal experience, polyhedral meshes inhered the same quality problems of the starting

tetrahedral mesh, sometimes they made things worst.

• Are polyhedral meshes better than hex or tet meshes? You need to conduct your own numerical

experiments.

• Just to end for good the meshing talk:

• A good mesh is a mesh that serves your project objectives.

• So, as long as your results are physically realistic, reliable and accurate; your mesh is

good.

• At the end of the day, the final mesh will depend on the physic involve.

• Know your physics and generate a mesh able to resolve that physics, without over-doing.

• At this point, I think you got the idea of the relevance of the mesh.

Mesh quality and cell type

78

Tips and tricks in OpenFOAM®

Mesh quality and cell type

A good mesh might not lead to the ideal solution, but a bad

mesh will always lead to a bad solution.

P. Baker – Pointwise

Who owns the mesh, owns the solution.

H. Jasak – Wikki Ltd.

Garbage in – garbage out. As I am a really positive guy I

prefer to say, good mesh – good results.

J. G. – WD

79

Tips and tricks in OpenFOAM®

My simulation is always exploding

• If after choosing the numerical scheme, linear solvers, and time step, your simulation always crash, you can

try this.

• Set the discretization scheme of the convective terms to upwind.

• Set the discretization scheme of the diffusive terms to Gauss linear limited 0.5

• Set the discretization scheme of the gradient terms to cellLimited Gauss linear 1.0

• Set the temporal discretization scheme to euler.

• Use the PISO method, and set nCorrectors 3, and nNonOrthogonalCorrectors 2.

• Do not use adaptive time-stepping.

• Use a high value of viscosity.

• Use Newton-Krylov type linear solvers (do not use multigrid), and set the minimum number of

iterations to 5 (minIter 5) for all variables.

• Use a CFL number of the order of 0.5 and set deltaT to a low value in order to avoid jumps during

the first iteration.

• This is one of a hell stable numerical scheme. However it is first order accurate.

• If this does not work, you should check your boundary conditions, initial conditions, physical properties and

model properties.

• You should also know the limitations of the solver you are trying to use, maybe the solver is not compatible or

can not solve the physics involve.

80

Tips and tricks in OpenFOAM®

functionObject

• When using utilities (e.g. mirrorMesh), do not use functionObject as they might cause some

problems. Yon can run the utility as follows,

• utility_name –noFunctionObjects

• Remember, functionObject can be temporarily disabled by launching the solver (or utility) with

the option –noFunctionObjects.

• If you forget to use a functionObject, you do not need to re-run your simulation.

• The solution to this problem is to use the solver with the option -postProcess. This will only

compute the new functionObject, it will not rerun the simulation.

• For instance, let us say that you forgot to use a given functionObject. Open the dictionary
controlDict, add the new functionObject, and type in the terminal,

• $> name_of_the_solver -postProcess –dict dictionary_location

• Do not forget to set all your functionObjects before launching your simulation.

81

Tips and tricks in OpenFOAM®

On the incompressible solvers

• I am going to be really loud on this.

• For those using the incompressible solvers (icoFoam, simpleFoam, pisoFoam,

pimpleFoam), I want to remind you that the pressure used by these solvers is the modified

pressure or,

• So when visualizing or post processing the results do not forget to multiply the pressure by the

density in order to get the physical pressure.

• This will not make much different if you are working with air, but if you are working with water,

you will notice the difference.

• By the way, you should also multiply the wall shear stresses by the density.

82

Tips and tricks in OpenFOAM®

Updating OpenFOAM®

• For those who like to always get the latest version of OpenFOAM®, I will give you a word of

advice.

• Before changing to the newest version, run a series of test cases just to check the consistency

of the results.

• It has come to my attention (and maybe yours as well), that the guys of OpenFOAM® might

change (and will change) something in the new releases and you might not get the same

results.

• No need to say that very often the syntax change from version to version.

• Personally speaking, I have a test matrix of twelve cases (involving different physics and

models). So before deploying the new version, I always check if I get the same results. This is

part of the continuous and arduous task of verification and validation.

• A new version of OpenFOAM® not necessary is a guarantee of innovation, and an old version of

OpenFOAM® is no guarantee of efficiency.

83

Tips and tricks in OpenFOAM®

Best tip ever (and totally free)

• I know I sound like a broken record on this but try to always get a good quality mesh.

• Use accurate and robust numerical schemes (in time and space).

• At this point we all know what is a good quality mesh and what is an accurate numerical

scheme, if not, please read the theory.

• You do not do CFD without understanding the theory and the physics involve.

84

